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Method of Conjugate Radii for Solving Linear and Nonlinear Systems

PHILIP R. NACHTSHEIM

Ames Research Center

Summary

This paper describes a method to solve a system of
N linear equations in N steps. A quadratic form is devel-
oped involving the sum of the squares of the residuals of
the equations. Equating the quadratic form to a constant
yields a surface which is an ellipsoid.

For different constants, a family of similar ellipsoids can
be generated. Starting at an arbitrary point an orthogonal
basis is constructed and the center of the family of similar
ellipsoids is found in this basis by a sequence of projec-
tions. The coordinates of the center in this basis are the
solution of the linear system of equations. A quadratic
form in N variables requires N projections. That is, the
current method is an exact method. It is shown that the
sequence of projections is equivalent to a special case of
the Gram-Schmidt orthogonalization process. The current
method enjoys an advantage not shared by the classic
Method of Conjugate Gradients. The current method can
be extended to nonlinear systems without modification.
For nonlinear equations the Method of Conjugate
Gradients has to be augmented with a line-search
procedure. Results for linear and nonlinear problems
are presented.

Introduction

The computation method described herein belongs to the
general class of methods where the iterates are derived
from information available about the function and its
derivatives at each step. It applies to functions where the
minimum value of the function is known to be zero. In
order to apply the method to the general multidimensional
root finding problem, a function is introduced which is
the sum of the squares of the individual functions. This
function is called the squared-error function. It is positive
definite and has a global minimum of zero at all solutions
of the original set of equations.

Now consider the case of linear equations. In this case the
sum of the squares of the residuals is considered. The
squared-error function is a quadratic function of the
N variables. This quadratic form is positive definite and
has a global minimum of zero at all solutions of the
original set of equations, provided that the rank of the

coefficient matrix is N. Equating the quadratic form to a
constant yields a surface which is an ellipsoid. A basis for
this space is formed from the set of vectors reciprocal to
the conjugate radii of the ellipsoid. The conjugate radii and
the reciprocal vectors are generated by an interlocking
iterative procedure. This procedure is followed to solve a
system of linear equations. The solution of N linear
equations is accomplished in N iterations. That is, the
current method is an exact method for linear systems.

An advantage of this method is that it can be extended to
systems of nonlinear equations without modification. The
Method of Conjugate Gradients (ref. 1) solves a linear
system of dimension N in N steps. However, in order to
extend this method to nonlinear equations a line search
procedure has to augment the original method. The line
search procedure is required at each stage to generate
successive iteration points. At each stage the step size is
the solution of a minimization problem along a line in a
selected direction (ref. 2).

This paper has a twofold purpose. One purpose is to
present the method of conjugate radii for linear systems.
Another purpose is to extend the method to nonlinear
systems. “Nonlinear problems can in most cases be solved
only by approximating them by linear problems” (ref. 3).
The approach of the current method to solve a nonlinear
system is to approximate it by a quadratic function.

The current method is quadratically convergent. That is,
for a quadratic function of N variables, the root will be
found in N iterations. In the nonlinear case, assume the
squared-error function can be expanded in a Taylor series
about the root. The matrix whose elements are the second-
order partial derivatives of the function is called the
Hessian matrix. It is symmetric and positive definite. If it
is assumed that the function can be approximated near the
root by a quadratic form, the elements of the Hessian
matrix are the coefficients of the quadratic form. For
nonlinear functions, as the iterates approach the root, the
squared-error function is more closely quadratic and hence
convergence is more nearly quadratic.

After the relevant properties of central quadratic surfaces
are identified, the method is described for linear systems
and an algorithm is formulated. A linear and a nonlinear
example are treated by the same algorithm. The relation
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between the Gram-Schmidt orthogonalization procedure
and the current method is discussed, as is the duality
between the current method and the Method of Conjugate
Gradients.

Method of Conjugate Radii

Problem Statement

The system of N linear equations A x b⋅ =  is solved by
introducing the function

2 2f = ⋅ − ⋅ ⋅ − = ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅( ) ( ) ' 'A x b A x b x A A x x A b b b
(1)

The raised dot in an expression such as A x⋅  denotes
matrix multiplication. Square matrices appear as bold
capital letters and vectors appear as bold lower case letters.
In the dot product, vectors that appear before the dot are
understood to be row vectors and those that appear after are
understood to be column vectors. The transpose of a
matrix is denoted by a prime.

For an arbitrary x the function (1) is the square of the
magnitude of the residual b A x− ⋅  which is a measure
of the error incurred by the choice of x. In carrying out
the computations, it is necessary to evaluate the gradient.

The formula for the gradient is

g A A x b≡ ∇ = ⋅ ⋅ −f ' ( ) (2)

When the squared error is held constant, equation (1)
represents a family of quadratic surfaces. Each constant
value leads to a different surface. For a system of two
linear equations the significance of the quadratic surfaces
can be visualized. If the equations are expressed in terms
of the usual Cartesian coordinates (x,y), and if the squared
error represents altitude above the (x,y) plane, a three-
dimensional surface is obtained. The surface has the form
of a bowl, an elliptic paraboloid with vertex at the point c
in the (x,y) plane. Figure 1 shows multiple level lines of
such a surface. Two of these level lines are projected onto
the (x,y) plane. The vector c is the solution of the system
of equations, that is, A c b⋅ = . The projections of the
level lines of the squared-error function onto the (x,y)
plane represents a family of concentric ellipses, quadratic
surfaces, similar to each other. These are called error-
ellipses (ref. 3). In higher dimensions, an error-ellipsoid is
obtained.

The problem of solving the linear system A x b⋅ =  for
x is equivalent to the problem of determining the center c
of the family of similar error-ellipsoids generated by the
squared-error function.

In view of the equivalence of the two problems, the
following problem is addressed herein.  The problem to be
solved is: find the origin of a system of coordinates in
which a family of similar central quadratic surfaces is
embedded starting at an arbitrary point.

The central quadratic surfaces associated with the problem
A r⋅ = 0  are related to the non-central quadratic surfaces
associated with the problem A x b⋅ =  by means of the
coordinate transformation r x c= − . It is to be empha-
sized in what follows that x and r are the same point, and
this point has different labels and components, in the two
coordinate frames.

The point x = c corresponds to the center of the family of
similar error-ellipsoids in the x coordinate frame, and the
point r = 0 corresponds to the center of the same family
in the r  coordinate frame. It will be shown that the
sequence of operations that leads to the origin in the r
coordinate frame, starting from an arbitrary point r , leads
to the solution c in the x coordinate frame, starting from
an arbitrary point x.

The properties of central quadratic surfaces play a
significant role in the analysis which will be presented.
Denoting A A' ⋅ by H, the expressions for the squared-
error function and the gradient can be written in the r
coordinate frame as follows:

2 f = ⋅ ⋅r H r  (3)

g H r= ⋅ (4)

The representation of planes in space and the essential
properties of central quadratic surfaces which will be used
in the analysis are identified. The three-dimensional case
will be discussed.

Representation of Planes and Properties of
Central Quadratic  Surfaces

In analytic geometry the intercept form of a plane is
written as

r n⋅ = 1

where the components of n are the reciprocals of the
intercepts of the plane on the coordinate axes and r  is the
position vector of a general point on the plane.

This equation when rewritten as follows reveals some
interesting features:

r n r ncos ,( ) = 1

Here r  and n  denote the magnitudes of the vectors r
and n respectively and (n,r ) denotes the angle between n
and r . Now n , the length of n, is the reciprocal of the
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perpendicular distance from the origin to the plane since
r n rcos( , ) is that distance. As stated, the components

of n are the reciprocals of the intercepts of the plane on
the axes.

Gibbs (ref. 4) points out that the vector n can be used to
denote the plane. It may be taken as the vector coordinate
of the plane. To designate a plane denoted by the vector n
the notation (n,1) is used. This is the notation of analytic
geometry to specify the “coordinates of a plane.”

If the elements of H are constant, then

 r H r⋅ ⋅  = const

is a quadratic in r . It represents an ellipsoid with center
at the origin.

Hence for the problem at hand, the following family of
similar ellipsoids is considered:

 
r H r⋅ ⋅ =

2
1

f
 (5)

Define the normalized gradient

n
g H

r≡ = ⋅
2 2f f

(6)

From this definition it follows that n r⋅ = 1.

Figure 2 illustrates the foregoing relations in two
dimensions. The tangent plane to an ellipse at the point R
is shown. The normalized gradient at this point is also
shown. This is the vector originating at the point R and
terminating at the point N. The center of the ellipse is
labeled C and this point is the origin of the r coordinate
frame. The point labeled 0 in this figure is the origin of
the x coordinate frame. The components of the vector n,
which is the normalized gradient referred to the origin in
the r coordinate frame, are (1,1). The intercepts of the
tangent plane when referred to the same origin are (1,1).
The vector n represents the tangent plane. The length of

this vector is 2 . The distance of the tangent plane

from the origin is 1 2  which is the reciprocal of the

length of n. Also, the vector which represents the plane
tangent to the similar inner ellipse at the point (0,.5) with
intercepts (.5,.5) would have components (2,2) and length

2 2⋅ . The distance of this plane from the origin is

1 2 2( )⋅ . That is, the nearer a plane is to the origin

the longer the vector will be that represents it.

At any point r1  of the quadratic surface (5), n1, the vector
given by equation (6) at that point, is normal to the
tangent plane at r1 . The equation of the tangent plane at
r1  is n r r1 1 0⋅ − =( ) . Since r n1 1 1⋅ = , this can be
written n r1 1⋅ = . Now n1  the length of n1 is the

reciprocal of the perpendicular distance from the origin to
the tangent plane at r1 . The plane coordinates of the
tangent plane are (n1, 1).

The vector 
n

n n
1

1 1⋅
 is the vector drawn from the center,

the origin of the r coordinate frame, perpendicular to the

tangent plane (ref. 4). See figure 2. The standard approach
for solving a system of equations is to assume an initial
approximation r1  and to proceed to an improved approxi-

mation r2 by using an iterative formula of the form

 r r
n

n n2 1
1

1 1

= −
⋅

The significance of the vector drawn from the origin
perpendicular to the tangent plane is that it represents, in
the terminology of the standard approach, the negative of
the “direction of search,” and its magnitude determines the
“step size” in this direction. As explained below, the
strategy of establishing a plane at a point r1and moving

toward the origin a distance 
1

1n
 is the basis of the

current method.

Any two vectors r and s  are referred to as conjugate

vectors if r H s⋅ ⋅ = 0 . The tangent plane at the point

r1  is (n1, 1).The plane through the origin parallel to

this tangent plane has plane coordinates (n1 , 0). It is

referred to as the diametral plane conjugate with r1 .

Any vector r in that plane satisfies the relation

r H r r n⋅ ⋅ = ⋅ =1 1 0 .

If three points located on similar ellipsoids of the form (5)
satisfy the equations

r H r r H r r H r1 2 2 3 3 1 0⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ =

the position vectors ( , , )r r r1 2 3  are said to form a
conjugate set. The vectors ( , , )r r r1 2 3  and ( , , )n n n1 2 3
form reciprocal sets. See reference 4. The relation
r H r1 2⋅ ⋅  is symmetric in the indices 1 and 2; that is,
r H r r H r1 2 2 1⋅ ⋅ = ⋅ ⋅ . Hence, if n r1 2 0⋅ =  then
n r2 1 0⋅ = .

Method of Solution

The method of solution is similar to the process of
assigning Cartesian coordinates (x,y,z), given the
Cartesian frame, to a point P in space. The frame is given
by giving three mutually perpendicular coordinate planes.
Their lines of intersection are the axes of the coordinates
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and are called the x axis, y axis, and z axis. The point of
intersection of the coordinate planes is the origin. Let P
be any point in space and let three planes be drawn
through P perpendicular to the coordinate planes and
cutting the axes at x, y, and z. These three planes
together with the coordinate planes bound a rectangular
parallelepiped, of which P and the origin 0 are opposite
vertices. The three edges x, y, and z are called the
rectangular coordinates of P. That is, the rectangular
coordinates of P are equal to its perpendicular distances
from the coordinate planes.

The method of solution described herein follows the
procedure described in the previous paragraph starting at
the point P. That is, the origin is located with respect to
P. The length of the edges of the parallelepiped are
conveniently found using the vector representation of a
plane. The strategy at each iteration point for the construc-
tion of a plane is enabled by the relations satisfied by the
mutually conjugate position vectors generated up to that
point.

The construction will be carried out for the three-
dimensional case. Figure 3 shows the parallelepiped. The
vertex of the parallelepiped opposite the origin 0 is labeled
R1 . The vertex of the parallelogram in the plane of the
three points 0, R2 , and R3 opposite the origin 0 is
labeledR2 . The vertex of the line connecting the points 0
andR3 opposite the origin 0 is labeledR3.

In three dimensions, three iteration points ( , , )r r r1 2 3  will

be generated. It will be demonstrated that the iteration
points form a conjugate set. In carrying out the procedure
the following results will be demonstrated:

1) The vectors n n n n n n1 1 2 1 2 3, ,+ + +  form a

three-dimensional orthogonal basis.

2) The vectors reciprocal to the vectors
n n n n n n1 1 2 1 2 3, ,+ + +  satisfy the following

relations

r r
n

n n1 2
1

1 1

− =
⋅

(7)

 r r
n n

n n n n2 3
1 2

1 2 1 2

− = +
+ ⋅ +( ) ( )

(8)

r
n n n

n n n n n n3
1 2 3

1 2 3 1 2 3

= + +
+ + ⋅ + +( ) ( )

(9)

The reciprocal vectors are the right hand members of
equations (7), (8), and (9) respectively.

Carrying out the steps of the procedure will be a
constructive demonstration of the above results. The

procedure can be regarded as a coordinate transformation
from a given basis to a new basis. The coordinate
transformation will be accomplished by a sequence
of projections orthogonal to each of the vectors
n n n n n n1 1 2 1 2 3, ,+ + + . These vectors themselves
are obtained during the sequence.

The problem of finding the origin will be carried out in
the new basis. Referring to figure 3,R1  will be projected

onto the parallelogram yielding R2 . Then R2  will be

projected onto the line 0 –R3 yielding R3. Finally, R3

will be projected onto the origin. These projections will
be identified at each step.

At each step of the iteration, it is necessary to compute
the components of the original basis n n n1 2 3, ,  in terms

of the new basis n n n n n n1 1 2 1 2 3, ,+ + + . These

components are needed to carry out the next step of the
iteration or to show that the iteration is complete.

The process starts at an arbitrary point. In general, once r
is known, n can be calculated using (6). At the point r1 ,

construct the plane (n1 , 1). That is, use the point

normal form of the equation of a plane to write
n r r1 1 0⋅ − =( ) . Since n r1 1 1⋅ = , the intercept form

of the plane is n r1 1⋅ = . This plane is the tangent plane

at the point r1 . Then construct a plane parallel to the

plane at r1  that passes through the origin. This is the

plane (n1, 0). This is the first coordinate plane. The

distance of the original plane (n1 , 1) from the origin is
1

1n
. The location of a point r2  that lies on the

Cartesian coordinate plane (n1, 0), the parallelogram in

figure 3, is obtained by projecting r1  onto that plane.

That is

r r
n n

n n
r2 1

1 1

1 1
1= −

⋅
⋅

However, r1  lies on the tangent plane ( , )n1 1 ; therefore,
n r1 1 1⋅ = . Hence, the location of the point is given by
the equation

r r
n

n n2 1
1

1 1

= −
⋅

(10)

The scalar product n r r H r1 2 1 2 0⋅ = ⋅ ⋅ =  shows that

the two position vectors r1 , r2  form a conjugate set since

n r1 2 0⋅ = . By symmetry n r2 1 0⋅ = . That is,

n r r H r r n1 2 1 2 1 2⋅ = ⋅ ⋅ = ⋅ .
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Hence, the vectors ( , )r r1 2  and ( , )n n1 2  form reciprocal
sets.

Therefore

( ) ( )n n r r1 2 1 2 0+ ⋅ − = (11)

Equations (7) and (11) show that

n n n1 1 2 0⋅ + =( ) (12)

The following relation follows from equation (12):

 n n n n n n n2 1 2 1 2 1 2⋅ + = + ⋅ +( ) ( ) ( ) (13)

The relations (12) and (13) are needed to express the
components of the basis n n n1 2 3, ,  in terms of the new
basis n n n n n n1 1 2 1 2 3, ,+ + + . These relations for
two dimensions are summarized in the following
multiplication table:

 

r r
n

n

n n

n n
n

n

1 2

1

1

2
1 2

1 2

2

1

2

1 0

1 1

−

⋅ +
+

−

In the table an entry in the dashed row is equal to the entry
in the corresponding column in the row directly below it.

The projection of n2  onto the (n1, 0) plane is n n1 2+ .
That is

n n n
n n

n n
n1 2 2

1 1

1 1
2+ = −

⋅
⋅ (14)

The multiplication table was used to arrive at this
equation.

Equation (12) suggests the vector ( )n n1 2+  can be used

as the normal to construct a plane perpendicular to the
plane (n1, 0). At the point r2 , construct the plane

( , )n n1 2 1+ . The plane parallel to this plane that passes

through the origin is ( , )n n1 2 0+ . Since (n1, 0) is

the first coordinate plane, it is appropriate to select
( , )n n1 2 0+  as the second coordinate plane.

The location of a point r3 that lies on the second
coordinate plane, (n n1 2+ , 0), is obtained by projecting
r2  onto that plane. That is

r r
n n n n

n n n n
r3 2

1 2 1 2

1 2 1 2
2= − + +

+ ⋅ +
⋅( )( )

( ) ( )

However, r2  lies on the plane ( , )n n1 2 1+ ; therefore,

( )n n r1 2 2 1+ ⋅ = .

Hence, the location of the point is given by the equation

r r
n n

n n n n3 2
1 2

1 2 1 2

= − +
+ ⋅ +( ) ( )

(15)

Using equation (15) to represent r3 and utilizing the

relations (12) and (13) which are summarized in the
multiplication table, it is readily verified that
n r n r1 3 2 3 0⋅ = ⋅ =  and by symmetry

n r n r3 1 3 2 0⋅ = ⋅ = .

The geometric interpretation of this result is interesting.
The equation n r1 0⋅ =  is the equation of the diametral

plane conjugate with r1 , and the equation n r2 0⋅ =  is

the equation of the diametral plane conjugate with r2 .

Simultaneously, these two equations represent the line of
intersection of the two diametral planes. The results,
n r n r1 3 2 3 0⋅ = ⋅ = , establish that r3 is along this line

of intersection. This is the line 0–R3 shown in figure 3.

The conjugate relation is symmetric. Hence, r1  is

in the plane conjugate with r3 as is r2 . That is,

r H r r H r2 3 3 1 0⋅ ⋅ = ⋅ ⋅ = . This result along with

the result r H r1 2 0⋅ ⋅ =  established previously indicates

that the position vectors ( , , )r r r1 2 3  form a conjugate set.

Since the vectors ( , , )r r r1 2 3  and ( , , )n n n1 2 3  form
reciprocal sets, it follows

( ) ( )n n n r r1 2 3 2 1 0+ + ⋅ − =  (16)

( ) ( )n n n r r1 2 3 3 2 0+ + ⋅ − = (17)

Equations (7) and (16) show

n n n n1 1 2 3 0⋅ + + =( ) (18)

Equations (8) and (17) show

( ) ( )n n n n n1 2 1 2 3 0+ ⋅ + + =  (19)

From equations (18) and (19) it follows

n n n n2 1 2 3 0⋅ + + =( ) (20)

The final relation needed to express the components
of the basis n n n1 2 3, ,  in terms of the new basis
n n n n n n1 1 2 1 2 3, ,+ + +  can be obtained by combining
equations (18) and (20). This relation is

n n n n n n n n n n3 1 2 3 1 2 3 1 2 3⋅ + + = + + ⋅ + +( ) ( ) ( )

(21)
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The foregoing relations for three dimensions are used to
update the two-dimensional multiplication table. The
current relations are summarized in the following
multiplication table:

r r r r
n

n

n n

n n

n n n

n n n
n

n

n

1 2 2 3

1

1

2
1 2

1 2

2
1 2 3

1 2 3

2

1

2

3

1 0 0

1 1 0

0 1 1

− −

⋅ +
+

+ +
+ +

−
−

The projection of n3  onto the plane (n n1 2+ , 0) is

n n n1 2 3+ + . That is

n n n n
n n n n

n n n n
n1 2 3 3

1 2 1 2

1 2 1 2
3+ + = − + +

+ ⋅ +
⋅( )( )

( ) ( )
(22)

The current multiplication table was used to arrive at this
equation.

Equation (19) suggests the vector ( )n n n1 2 3+ +  can be

used as the normal to construct a plane perpendicular to
the plane (n n1 2+ , 0). At the point r3, construct the

plane ( , )n n n1 2 3 1+ + . The plane parallel to this plane

that passes through the origin is ( , )n n n1 2 3 0+ + .

Equation (18) shows that this plane is perpendicular
to the plane (n1, 0), and equation (19) shows that it is

perpendicular to the plane (n n1 2+ , 0). Since (n n1 2+ ,

0) is the second coordinate plane, it is appropriate to select
( , )n n n1 2 3 0+ +  as the third and final coordinate plane.

The location of a point r4  that lies on the third coordinate

plane (n n n1 2 3+ + , 0) is obtained by projecting r3

onto that plane. That is

r r
n n n n n n

n n n n n n
r4 3

1 2 3 1 2 3

1 2 3 1 2 3
3= − + + + +

+ + ⋅ + +
⋅( )( )

( ) ( )

However, r3 lies on the plane ( , )n n n1 2 3 1+ + ; there-
fore, ( )n n n r1 2 3 3 1+ + ⋅ = . Hence, the location of the
point is given by the equation:

r r
n n n

n n n n n n4 3
1 2 3

1 2 3 1 2 3

= − + +
+ + ⋅ + +( ) ( )

(23)

This equation will be used to show r4 0= .

In order to express a vector in a basis ( , , )r r r1 2 3 , its

components in the reciprocal basis ( , , )n n n1 2 3  are

formed. Hence r4  can be expressed as follows:

r r n r r n r r n r4 4 1 1 4 2 2 4 3 3= ⋅ + ⋅ + ⋅( ) ( ) ( ) (24)

Using equation (23) to represent r4 , the components can
be calculated using equations (17), (19), and (21) which
are summarized in the current multiplication table. All the
components vanish, hence r4 0= .

The above procedure, carried out in the r  coordinate frame,
led to the center, r  = 0, starting at an arbitrary point. The
same procedure, carried out in the x coordinate frame, will
also lead to the center, x = c, starting at an arbitrary
point. That is, r4 0=  corresponds to x c4 = .

Algorithm

For any two points, 1 and 2 for instance, it is the case
that x x r r1 2 1 2− = − . This equation is correct since it
is independent of the origin. Using this fact and express-
ing the terms involving r in equations (7), (8), and (9) in
terms of x and rearranging those equations leads to the
following procedure in the x coordinate frame.

The procedure in the x coordinate frame starting from an
arbitrary point, x1, can be summarized as follows:

x x
n

n n2 1
1

1 1

= −
⋅

x x
n n

n n n n3 2
1 2

1 2 1 2

= − +
+ ⋅ +( ) ( )

c x
n n n

n n n n n n
= − + +

+ + ⋅ + +3
1 2 3

1 2 3 1 2 3( ) ( )

Given x1 the above equations can be evaluated in

sequence using the relation n g= / 2 f . In general,

once x is known, g and 2f can be calculated using
equations (1) and (2) for the linear case. For the linear
case, it is understood that A is an NxN matrix of full
rank. For the nonlinear case the gradient vector g = ∇f
is obtained by calculating the required partial derivatives
of the squared-error-function 2f.

For N dimensions the algorithm is implemented by
carrying out the following steps:
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Set  n = 0

Set  x = 0 or any arbitrary value

for index = 1:1:N  where N is the number of
unknowns

n = n + g/2f

x x
n

n n
= −

⋅
end

return x

Examples

A Linear Example

A two-dimensional example will be presented. This
example will illustrate the application of the method and
will also illustrate the relation between the basis ( , )r r1 2

and its reciprocal ( , )n n1 2  and the relation between the

orthogonal basis ( , )n n n1 1 2+  and its reciprocal

( ,
( )

)
n

n n
n n

n n n n
1

1 2

1 2

1 2 1 2⋅
+

+ ⋅ +( ) . The solution of the

following linear system is considered:

3 5

2 5

x y

x y

+ =
+ =

Equations (1) and (2) are used to compute 2f and g .

Figure 4 shows the projection of two level lines of the
squared-error function, 2f, onto the (x,y) plane. The
solution of the system of equations is (x,y) = (1,2).
This point is labeled C in the figure. The origin of the
x coordinate frame is labeled 0. The starting point was
(x,y) = (1,3). The two vectors forming the basis ( , )r r1 2

are labeled (R1,R2) in the figure. The vectors ( , )n n1 2

reciprocal to them are also shown and are labeled (N1,N2).

In addition, the parallelogram of which R1 is a diagonal is

shown. The vertices of this parallelogram are labeled C,
P, R1, and R2. The portion of the parallelogram that is not

obscured by solid lines is shown as the dashed line. The
line R1–P is tangent to the ellipse at the point R1. The

vector n n1 2+  terminates at the point Q. The magnitude

of both of the vectors n1 andn n1 2+  is 2 .

The vectors ( ,
( )

)
n

n n
n n

n n n n
1

1 2

1 2

1 2 1 2⋅
+

+ ⋅ +( )  reciprocal

to the base vectors ( , )n n n1 1 2+  are not labeled in the

figure. They are in the same direction as the base vectors

and their magnitudes are the reciprocals of the base

vectors, namely 1 2 . The first reciprocal vector

terminates at the point P and the second terminates at the
point R2 . They are the edges of the parallelogram of

which R1 is the diagonal.

In order to describe the sequence of projections, the same
problem as above is discussed but with a different starting
point. Figure 5 identifies the projection planes. All the
labels shown in this figure have the same significance as
the labels in figure 4. The starting point used in figure 5
was (x,y) = (2,0). The identification of the four planes
used in the construction is as follows: The ( , )n1 1  plane
is the horizontal plane that passes through the pointR1 .
The parallel horizontal plane ( , )n1 0  is the plane that
passes through the point C, the center. The ( , )n n1 2 1+
plane is the vertical plane that passes through the
pointR2 . The parallel vertical plane ( , )n n1 2 0+ is the
plane that passes through the point C.

The projections described earlier were performed. First,
r1  which is located in horizontal plane ( , )n1 1  was

projected onto the parallel ( , )n1 0  plane, as was n2 .

This led to the position vector r2  and the vector

n n1 2+  respectively. The vectors r2  and n n1 2+
both terminate at the pointR2 . Second, r2 , which is

located on the vertical plane ( , )n n1 2 1+ , was

projected onto the parallel ( , )n n1 2 0+  plane. This

results in the point C which is the solution of the system
of equations. The orthogonal planes which were
constructed are ( , )n1 0  and ( , )n n1 2 0+ . The vectors

( ,
( )

)
n

n n
n n

n n n n
1

1 2

1 2

1 2 1 2⋅
+

+ ⋅ +( )  which terminate at

the points ( , )P R2  are the edges of the parallelogram of

which R1 is the diagonal.

The results shown in figure 5 permit a comparison to be
made between the current method and the Method of
Conjugate Gradients. If the calculation was performed by
that method starting at the point R1 , the next point would
be the point labeled CG in the figure. This point is
located by minimizing the squared-error function along the
line R R1 2−  shown in the figure. The radii C-CG and
C-P are conjugate radii.

A Nonlinear Example

The extension of the current method to nonlinear systems
will be illustrated for Rosenbrock’s function (ref. 5).

2 100 12 2 2f x y y x x( , ) ( ) ( )= − + −
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The current method can be applied to find the root
( , ) ( , )x y = 1 1 , where f x y( , ) = 0 , since Rosenbrock’s

function represents the sum of the squares of two
individual functions. The gradient vector g = ∇f  is

readily found by calculating the required partial derivatives
of the function f. A contour map is shown in figure 6
which shows the solution path to the root for the current
method starting at the point (–1.2,1). The function value
was reduced to 4 × 10–13  in 13 iterations. This compares
with Fletcher and Reeves’ value of 1 × 10–8 after
27 iterations using a line search procedure together
with the Method of Conjugate Gradients (ref. 2).

Another contour map is shown in figure 7 which shows
the solution path to the root for the current method
starting at the point (–1.92,2). Results for this starting
point are given in reference 6. These results are compared
with the current method in the table below. For these
results the function value was less than 1 × 10–4.

Method Iterations for
convergence

Gauss-Newton 48

Levenberg-Marquardt 90

Current 10

Discussion of Results

The sequence of projections orthogonal to each of the
vectors n n n n n n1 1 2 1 2 3, ,+ + +  is identical to the
Gram-Schmidt orthogonalization process applied to the
vectors n n n1 2 3, , . The results of the Gram-Schmidt
process are shown below:

n n1 1=

n n n
n n

n n
n1 2 2

1 1

1 1
2+ = −

⋅
⋅ (25)

n n n n
n n

n n
n

n n n n
n n n n

n1 2 3 3
1 1

1 1
3

1 2 1 2

1 2 1 2
3+ + = −

⋅
⋅ − + +

+ ⋅ +
⋅( )( )

( ) ( )
(26)

Equations (12) and (18) combined show that n n1 3 0⋅ = .

The same result is obtained by consulting the current
multiplication table. It can be seen that there is no need to
perform the first subtraction in equation (26) since the
term to be subtracted is zero. Hence, the sequence of
projections is identical to the Gram-Schmidt
orthogonalization process applied to the vectors
n n n1 2 3, , .

That they are identical for all cases can be seen by
rewriting equations (25) and (26) employing equations (7)
and (8) which give alternate expressions for the vectors
reciprocal to n1 and n n1 2+ .

The Gram-Schmidt equations (25) and (26), rewritten
employing equations (7) and (8), are shown below:

n n n n r r n1 2 2 1 1 2 2+ = − − ⋅( )  (27)

n n n n n r r n n n r r n1 2 3 3 1 1 2 3 1 2 2 3 3+ + = − − ⋅ − + − ⋅( ) ( )( )
(28)

The scalar products involving the vectors of the reciprocal
sets ( , , )r r r1 2 3  and ( , , )n n n1 2 3  which are needed to

evaluate the terms in equations (27) and (28) are arranged
in a table below:

( )

( ) ( )

r r n

r r n r r n
1 2 2

1 2 3 2 3 3

− ⋅
− ⋅ − ⋅

The only non-vanishing scalar products lie along the
diagonal. For a given row, the terms that appear before the
term on the diagonal all involve vanishing scalar products
of the reciprocal sets of vectors. Hence, only one subtrac-
tion per step is required to carry out the Gram-Schmidt
process, and the term subtracted at each step is identical to
the term subtracted in the projection process. The same
result is obtained directly using equations (25) and (26) if
the current multiplication table is consulted to determine
the value of the scalar products.

It should be noted that the Gram-Schmidt procedure can be
used to derive the basic algorithm of the Method of
Conjugate Gradients (ref. 7). As is the case here, in that
derivation only one subtraction per step is required.

There is a relatively direct duality between the Method of
Conjugate Gradients and the current method. In all
approaches to root finding, starting at an arbitrary point,
the following requirements have to be addressed: In
proceeding from one iteration point to the next, a step size
and a direction are required. In the Method of Conjugate
Gradients, consecutive directions are in conjugate
directions. The step size is such that the gradients at
consecutive points are orthogonal. In the current method,
consecutive directions are orthogonal. The step size is
such that consecutive points lie on conjugate radii.
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For the three-dimensional case, it is of interest to note
that the calculation performed herein parallels a similar
calculation performed in x-ray diffraction studies. The
vectors in the r coordinate frame correspond to lattice
vectors, and the vectors in the n coordinate frame corre-
spond to reciprocal lattice vectors. In x-ray diffraction
studies, the purpose of the calculation is to determine the
spacing between lattice planes. This interplanar spacing is
used to determine the condition for scattering-in-phase
known as Bragg’s law.

For systems of nonlinear equations, the current method is
a general method that converges quadratically to the
solution. That is, for a quadratic function of N variables,
it converges to the solution in N steps. The current
method enables a nonlinear system to be approximated
by a quadratic function.
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Figure 1. The squared-error function.
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Figure 2. Vector representation of a plane.

Figure 3. The conjugate set and the reciprocal set.
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Figure 4. Linear example, initial point (1,3).

Figure 5. Linear example, initial point (2,0).
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Figure 6. Nonlinear example, initial point (–1.2,1).

Figure 7. Nonlinear example, initial point (–1.92,2).
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This paper describes a method to solve a system of N linear equations in N steps. A quadratic form is developed
involving the sum of the squares of the residuals of the equations. Equating the quadratic form to a constant yields a
surface which is an ellipsoid.  For different constants, a family of similar ellipsoids can be generated. Starting at an
arbitrary point an orthogonal basis is constructed and the center of the family of similar ellipsoids is found in this basis
by a sequence of projections. The coordinates of the center in this basis are the solution of the linear system of equa-
tions. A quadratic form in N variables requires N projections. That is, the current method is an exact method. It is shown
that the sequence of projections is equivalent to a special case of the Gram-Schmidt orthogonalization process. The
current method enjoys an advantage not shared by the classic Method of Conjugate Gradients. The current method can
be extended to nonlinear systems without modification. For nonlinear equations the Method of Conjugate Gradients has
to be augmented with a line-search procedure. Results for linear and nonlinear problems are presented.
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